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Chapter 7:  Deadlocks

♦ The Deadlock Problem 
♦ System Model (7.1)
♦ Deadlock Characterization (7.2)
♦ Methods for Handling Deadlocks (7.3)
♦ Deadlock Prevention (7.4)
♦ Deadlock Avoidance (7.5)
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Chapter Objectives

♦To develop a description of deadlocks, 
which prevents sets of concurrent processes 
from completing their tasks

♦To present a number of different methods 
fro preventing or avoiding deadlocks in a 
computer system
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The Deadlock Problem
♦ A set of blocked processes each holding a resource 

and waiting to acquire a resource held by another 
process in the set.

♦ Example 

– System has 2 tape drives.
– P1 and P2 each hold one tape drive and each needs 

another one.

The Deadlock Problem (cont.)

♦ Bridge Crossing Example

– Traffic only in one direction.
– Each section of a bridge can be viewed as a resource.
– If a deadlock occurs, it can be resolved if one car backs 

up (preempt resources and rollback).
– Several cars may have to be backed up if a deadlock 

occurs.
– Starvation is possible.
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System Model (7.1)
♦ Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

♦ Each resource type Ri has Wi instances.

♦ Each process utilizes a resource as follows:

– request 
– use 
– release

Deadlock Characterization (7.2)

♦ Mutual exclusion: only one process at a time can use a resource.

♦ Hold and wait: a process holding at least one resource is waiting to 
acquire additional resources held by other processes.

♦ No preemption: a resource can be released only voluntarily by the 
process holding it, after that process has completed its task.

♦ Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes 
such that P0 is waiting for a resource that is held by P1, P1 is waiting for 
a resource that is held by P2, …, Pn–1 is waiting for a resource that is 
held by Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously
(necessary condition).

Deadlock⇒ 4 conditions hold simultaneously
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Deadlock Characterization (7.2) (cont.)

♦ Resource-Allocation Graph

– V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set consisting of all the processes in 

the system.

• R = {R1, R2, …, Rm}, the set consisting of all resource types 
in the system.

– request edge – directed edge Pi→ Rj

– assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

♦ Resource-Allocation Graph (Cont.)

– Process

– Resource Type with 4 instances

– Pi requests instance of Rj

– Pi is holding an instance of Rj Pi

Rj

Deadlock Characterization (7.2) (cont.)

Pi

Rj
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Example of a Resource Allocation Graph

Resource Allocation Graph With a Deadlock

P2 req R3 hold by
P3 req R2 hold by P1
req R1 hold by P2
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Resource Allocation Graph With A Cycle But No 
Deadlock

P4 may release
Its resource that
will be allocated to P3
Thus breaking the cycle

Deadlock Characterization (7.2) (cont.)

♦ Basic Facts

– If graph contains no cycles ⇒ no deadlock.

– If graph contains a cycle ⇒

• if only one instance per resource type, then deadlock.
• if several instances per resource type, possibility of deadlock.
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Methods for Handling Deadlocks (7.3) 

♦ Ensure that the system will never enter a deadlock 
state.

♦ Allow the system to enter a deadlock state and 
then recover.

♦ Ignore the problem and pretend that deadlocks 
never occur in the system; used by most operating 
systems, including UNIX.

Deadlock Prevention (7.4)

♦ Mutual Exclusion – not required for sharable  
resources (not involved in a deadlock); must hold for 
nonsharable resources (such as printer).

♦ Hold and Wait (never occurs)– must guarantee that 
whenever a process requests a resource, it does not 
hold any other resources.
– Require process to request and be allocated all its 

resources before it begins execution (tape-disk-printer), or 
allow process to request resources only when the process 
has none.

– Disadvantages: low resource utilization; starvation is 
possible.

One of the conditions should not hold !
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Deadlock Prevention (7.4) (Cont.)

♦ No Preemption 
– If a process that is holding some resources requests 

another resource that cannot be immediately allocated 
to it, then all resources currently being held are 
released.

– Preempted resources are added to the list of resources 
for which the process is waiting.

– Process will be restarted only when it can regain its old 
resources, as well as the new ones that it is requesting.

♦ Circular Wait 
– Impose a total ordering of all resource types, and 

require that each process requests resources in an 
increasing order of enumeration.

Deadlock Avoidance (7.5)

♦ Simplest and most useful model requires that each 
process declare the maximum number of resources 
of each type that it may need.

♦ The deadlock-avoidance algorithm dynamically 
examines the resource-allocation state to ensure 
that there can never be a circular-wait condition.

♦ Resource-allocation state is defined by the number 
of available and allocated resources, and the 
maximum demands of the processes.

Requires that the operating system has some additional a priori

information available.
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Deadlock Avoidance (7.5) (cont.)

♦ Safe State

– When a process requests an available resource, the 
operating system must decide if immediate allocation 
leaves the system in a safe state.

– System is in safe state if there exists a safe sequence of 
all processes. 

Deadlock Avoidance (7.5) (cont.)

♦ Safe state (cont.)
– Sequence <P1, P2, …, Pn> is safe if for each Pi, the 

resources that Pi can still request (the need) can be 
satisfied by currently available resources + resources 
held by all the Pj , with j<i (order is important!).

• If Pi resource needs are not immediately available, then Pi can 
wait until all Pj (j<i) have finished.

• When Pj is finished, Pi can obtain needed resources, execute, 
return allocated resources, and terminate. 

• When Pi terminates, Pi+1 can obtain its needed resources, and 
so on. 



CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 10

Deadlock Avoidance (7.5) (cont.)

♦ Safe state (cont.)

– Basic Facts

• If a system is in safe state ⇒ no deadlocks.

• If a system is in unsafe state ⇒ possibility of deadlock.

• Avoidance ⇒ ensure that a system will never enter an unsafe 
state. 

Safe, Unsafe , Deadlock State
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Deadlock Avoidance (7.5) (cont.)

♦ Resource-Allocation Graph (RAG) Algorithm: Case of 
one instance of resource types

– Claim edge Pi ---> Rj indicated that process Pi may request 
resource Rj; represented by a dashed line.

– Claim edge converts to request edge when a process requests a 
resource.

– When a resource is released by a process, assignment edge 
reconverts to a claim edge.

– Resources must be claimed a priori in the system.

Principle:
– Pi requests Rj. It is granted only if the assignment Rj Pi does not 

create a cycle in the RAG

Resource-Allocation Graph For Deadlock Avoidance

P2 will not be granted R2
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Unsafe State In Resource-Allocation Graph

Deadlock Avoidance (7.5) (cont.)
Case of Multiple Instances of Resources

♦ Banker’s Algorithm = update resources + test safety

– Multiple instances of resources (the RAG algorithm is 
not applicable in this case!).

– Each process must a priori claim maximum use.

– When a process requests a resource it may have to wait.  

– When a process gets all its resources it must return 
them in a finite amount of time.
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Deadlock Avoidance (7.5) (cont.)

♦ Data Structures for the Banker’s Algorithm

– Available: Vector of length m. If available [j] = k, there 
are k instances of resource type Rj available.

– Max: n x m matrix.  If Max [i,j] = k, then process Pi may 
request at most k instances of resource type Rj.

– Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is 
currently allocated k instances of Rj.

– Need:  n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types. 

Deadlock Avoidance (7.5) (cont.)
♦ Banker’s Algorithm (cont.)

– Safety Algorithm
1. Let Work and Finish be vectors of length m and n, respectively.  

Initialize:
Work = Available
Finish [i] = false for i =1,3, …, n.

2. Find an index i such that both: 
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.
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Deadlock Avoidance (7.5) (cont.)
♦ Banker’s Algorithm (cont.)

– Resource-Request Algorithm for Process Pi

Request = request vector for process Pi.  If Requesti [j] = k
then process Pi wants k instances of resource type Rj.

1. If Requesti ≤ Needi go to step 2.  Otherwise, raise error 
condition, since process has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3.  Otherwise Pi must wait, 
since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying the 
state as follows:

Available = Available - Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti

• If safe ⇒ the resources are allocated to Pi. (calls safety algorithm)
• If unsafe ⇒ Pi must wait, and the old resource-allocation state is 

restored

Deadlock Avoidance (7.5) (cont.)

♦ How does Banker’s Algorithm Work ?

– 5 processes: P0 through P4; 
– 3 resource types: A (10 instances), 

B (5 instances), and C (7 instances).

– Snapshot at time T0:
– Using the update algorithm

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2  
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

avail = avail-alloc
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Deadlock Avoidance (7.5) (cont.)

♦ Example (cont.)

– The content of the matrix Need is related as:
Max – Allocation = Need.

Need
A B C

P0 7 4 3 
P1 1 2 2 
P2 6 0 0 
P3 0 1 1
P4 4 3 1 

– Using the safety algorithm, the system is in a safe state since 
the sequence < P1, P3, P4, P2, P0> satisfies safety criteria. 

<P1,P3,P4,P2,P0> safe:
P1 may request
1 2 2, covered by
current available 3 3 2
P3 may request
0 1 1 covered by 
current available 2 1 0 + alloc(P1) 1 2 2

Deadlock Avoidance (7.5) (cont.)
♦ Example (cont.): P1 Request (1,0,2) 

– Check that Request1 ≤ Available (that is, (1,0,2) ≤ (3,3,2)) ⇒ true ⇒
fulfillment of the request (but not yet granted!).

Allocation Need Available
A B C A B C A B C 

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0 
P2 3 0 2 6 0 0 
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1 

– Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> 
satisfies safety requirement ⇒ P1 request is granted. 

– Can request for (3,3,0) by P4 be granted? Answer is “no” (resources 
not available !)

– Can request for (0,2,0) by P0 be granted? Answer is “no”(resulting 
state is unsafe since no safe sequence can be found!!!)

av:=av – req;

alloc:= alloc+req;

need= need -req

update
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