
CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 1

Chapter 7: Deadlocks

♦ The Deadlock Problem
♦ System Model (7.1)
♦ Deadlock Characterization (7.2)
♦ Methods for Handling Deadlocks (7.3)
♦ Deadlock Prevention (7.4)
♦ Deadlock Avoidance (7.5)

© Silberschatz et al, Operating System Concepts 7/e, Wiley, © 2005

Chapter Objectives

♦To develop a description of deadlocks,
which prevents sets of concurrent processes
from completing their tasks

♦To present a number of different methods
fro preventing or avoiding deadlocks in a
computer system

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 2

The Deadlock Problem
♦ A set of blocked processes each holding a resource

and waiting to acquire a resource held by another
process in the set.

♦ Example

– System has 2 tape drives.
– P1 and P2 each hold one tape drive and each needs

another one.

The Deadlock Problem (cont.)

♦ Bridge Crossing Example

– Traffic only in one direction.
– Each section of a bridge can be viewed as a resource.
– If a deadlock occurs, it can be resolved if one car backs

up (preempt resources and rollback).
– Several cars may have to be backed up if a deadlock

occurs.
– Starvation is possible.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 3

System Model (7.1)
♦ Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

♦ Each resource type Ri has Wi instances.

♦ Each process utilizes a resource as follows:

– request
– use
– release

Deadlock Characterization (7.2)

♦ Mutual exclusion: only one process at a time can use a resource.

♦ Hold and wait: a process holding at least one resource is waiting to
acquire additional resources held by other processes.

♦ No preemption: a resource can be released only voluntarily by the
process holding it, after that process has completed its task.

♦ Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes
such that P0 is waiting for a resource that is held by P1, P1 is waiting for
a resource that is held by P2, …, Pn–1 is waiting for a resource that is
held by Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously
(necessary condition).

Deadlock⇒ 4 conditions hold simultaneously

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 4

Deadlock Characterization (7.2) (cont.)

♦ Resource-Allocation Graph

– V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set consisting of all the processes in

the system.

• R = {R1, R2, …, Rm}, the set consisting of all resource types
in the system.

– request edge – directed edge Pi→ Rj

– assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

♦ Resource-Allocation Graph (Cont.)

– Process

– Resource Type with 4 instances

– Pi requests instance of Rj

– Pi is holding an instance of Rj Pi

Rj

Deadlock Characterization (7.2) (cont.)

Pi

Rj

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 5

Example of a Resource Allocation Graph

Resource Allocation Graph With a Deadlock

P2 req R3 hold by
P3 req R2 hold by P1
req R1 hold by P2

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 6

Resource Allocation Graph With A Cycle But No
Deadlock

P4 may release
Its resource that
will be allocated to P3
Thus breaking the cycle

Deadlock Characterization (7.2) (cont.)

♦ Basic Facts

– If graph contains no cycles ⇒ no deadlock.

– If graph contains a cycle ⇒

• if only one instance per resource type, then deadlock.
• if several instances per resource type, possibility of deadlock.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 7

Methods for Handling Deadlocks (7.3)

♦ Ensure that the system will never enter a deadlock
state.

♦ Allow the system to enter a deadlock state and
then recover.

♦ Ignore the problem and pretend that deadlocks
never occur in the system; used by most operating
systems, including UNIX.

Deadlock Prevention (7.4)

♦ Mutual Exclusion – not required for sharable
resources (not involved in a deadlock); must hold for
nonsharable resources (such as printer).

♦ Hold and Wait (never occurs)– must guarantee that
whenever a process requests a resource, it does not
hold any other resources.
– Require process to request and be allocated all its

resources before it begins execution (tape-disk-printer), or
allow process to request resources only when the process
has none.

– Disadvantages: low resource utilization; starvation is
possible.

One of the conditions should not hold !

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 8

Deadlock Prevention (7.4) (Cont.)

♦ No Preemption
– If a process that is holding some resources requests

another resource that cannot be immediately allocated
to it, then all resources currently being held are
released.

– Preempted resources are added to the list of resources
for which the process is waiting.

– Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

♦ Circular Wait
– Impose a total ordering of all resource types, and

require that each process requests resources in an
increasing order of enumeration.

Deadlock Avoidance (7.5)

♦ Simplest and most useful model requires that each
process declare the maximum number of resources
of each type that it may need.

♦ The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition.

♦ Resource-allocation state is defined by the number
of available and allocated resources, and the
maximum demands of the processes.

Requires that the operating system has some additional a priori

information available.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 9

Deadlock Avoidance (7.5) (cont.)

♦ Safe State

– When a process requests an available resource, the
operating system must decide if immediate allocation
leaves the system in a safe state.

– System is in safe state if there exists a safe sequence of
all processes.

Deadlock Avoidance (7.5) (cont.)

♦ Safe state (cont.)
– Sequence <P1, P2, …, Pn> is safe if for each Pi, the

resources that Pi can still request (the need) can be
satisfied by currently available resources + resources
held by all the Pj , with j<i (order is important!).

• If Pi resource needs are not immediately available, then Pi can
wait until all Pj (j<i) have finished.

• When Pj is finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate.

• When Pi terminates, Pi+1 can obtain its needed resources, and
so on.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 10

Deadlock Avoidance (7.5) (cont.)

♦ Safe state (cont.)

– Basic Facts

• If a system is in safe state ⇒ no deadlocks.

• If a system is in unsafe state ⇒ possibility of deadlock.

• Avoidance ⇒ ensure that a system will never enter an unsafe
state.

Safe, Unsafe , Deadlock State

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 11

Deadlock Avoidance (7.5) (cont.)

♦ Resource-Allocation Graph (RAG) Algorithm: Case of
one instance of resource types

– Claim edge Pi ---> Rj indicated that process Pi may request
resource Rj; represented by a dashed line.

– Claim edge converts to request edge when a process requests a
resource.

– When a resource is released by a process, assignment edge
reconverts to a claim edge.

– Resources must be claimed a priori in the system.

Principle:
– Pi requests Rj. It is granted only if the assignment Rj Pi does not

create a cycle in the RAG

Resource-Allocation Graph For Deadlock Avoidance

P2 will not be granted R2

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 12

Unsafe State In Resource-Allocation Graph

Deadlock Avoidance (7.5) (cont.)
Case of Multiple Instances of Resources

♦ Banker’s Algorithm = update resources + test safety

– Multiple instances of resources (the RAG algorithm is
not applicable in this case!).

– Each process must a priori claim maximum use.

– When a process requests a resource it may have to wait.

– When a process gets all its resources it must return
them in a finite amount of time.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 13

Deadlock Avoidance (7.5) (cont.)

♦ Data Structures for the Banker’s Algorithm

– Available: Vector of length m. If available [j] = k, there
are k instances of resource type Rj available.

– Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj.

– Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj.

– Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

Deadlock Avoidance (7.5) (cont.)
♦ Banker’s Algorithm (cont.)

– Safety Algorithm
1. Let Work and Finish be vectors of length m and n, respectively.

Initialize:
Work = Available
Finish [i] = false for i =1,3, …, n.

2. Find an index i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 14

Deadlock Avoidance (7.5) (cont.)
♦ Banker’s Algorithm (cont.)

– Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti [j] = k
then process Pi wants k instances of resource type Rj.

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise Pi must wait,
since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available = Available - Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti

• If safe ⇒ the resources are allocated to Pi. (calls safety algorithm)
• If unsafe ⇒ Pi must wait, and the old resource-allocation state is

restored

Deadlock Avoidance (7.5) (cont.)

♦ How does Banker’s Algorithm Work ?

– 5 processes: P0 through P4;
– 3 resource types: A (10 instances),

B (5 instances), and C (7 instances).

– Snapshot at time T0:
– Using the update algorithm

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

avail = avail-alloc

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.7: Deadlocks 15

Deadlock Avoidance (7.5) (cont.)

♦ Example (cont.)

– The content of the matrix Need is related as:
Max – Allocation = Need.

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

– Using the safety algorithm, the system is in a safe state since
the sequence < P1, P3, P4, P2, P0> satisfies safety criteria.

<P1,P3,P4,P2,P0> safe:
P1 may request
1 2 2, covered by
current available 3 3 2
P3 may request
0 1 1 covered by
current available 2 1 0 + alloc(P1) 1 2 2

Deadlock Avoidance (7.5) (cont.)
♦ Example (cont.): P1 Request (1,0,2)

– Check that Request1 ≤ Available (that is, (1,0,2) ≤ (3,3,2)) ⇒ true ⇒
fulfillment of the request (but not yet granted!).

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

– Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2>
satisfies safety requirement ⇒ P1 request is granted.

– Can request for (3,3,0) by P4 be granted? Answer is “no” (resources
not available !)

– Can request for (0,2,0) by P0 be granted? Answer is “no”(resulting
state is unsafe since no safe sequence can be found!!!)

av:=av – req;

alloc:= alloc+req;

need= need -req

update

	Chapter 7: Deadlocks
	Chapter Objectives
	The Deadlock Problem
	The Deadlock Problem (cont.)
	System Model (7.1)
	Deadlock Characterization (7.2)
	Deadlock Characterization (7.2) (cont.)
	Deadlock Characterization (7.2) (cont.)
	Example of a Resource Allocation Graph
	Resource Allocation Graph With a Deadlock
	Resource Allocation Graph With A Cycle But No Deadlock
	Deadlock Characterization (7.2) (cont.)
	Methods for Handling Deadlocks (7.3)
	Deadlock Prevention (7.4)
	Deadlock Prevention (7.4) (Cont.)
	Deadlock Avoidance (7.5)
	Deadlock Avoidance (7.5) (cont.)
	Deadlock Avoidance (7.5) (cont.)
	Deadlock Avoidance (7.5) (cont.)
	Safe, Unsafe , Deadlock State
	Deadlock Avoidance (7.5) (cont.)
	Resource-Allocation Graph For Deadlock Avoidance
	Unsafe State In Resource-Allocation Graph
	Deadlock Avoidance (7.5) (cont.)Case of Multiple Instances of Resources
	Deadlock Avoidance (7.5) (cont.)
	Deadlock Avoidance (7.5) (cont.)
	Deadlock Avoidance (7.5) (cont.)
	Deadlock Avoidance (7.5) (cont.)
	Deadlock Avoidance (7.5) (cont.)
	Deadlock Avoidance (7.5) (cont.)

